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LETTER TO THE EDlTOR 

Dynamic scaling of disordered Ising systems 

Hans-Otto Heuer 
Theoretische Physik 111, Ruhr-Universit2t Ebchum, Federal Republic of Germany 

Received 30 September 1992 in final form 4 December 1992 

Abstract. The critical dynamics of site-disordered three-dimensional king systems has 
been studied by conventional local dynamics simulations investing 1015 single spin tlips. 
We have verified that the correlation functions of disordered Ising systems obey dynamic 
scaling behaviour. The dynamic scaling functions have been calculated. The critical 
exponent x appears to be strongly dependent on the degree of disorder. We have shown 
that this dependence arises from a crossover phenomenon which has recently been 
detected in the static critical behaviour. The dynamical exponent has been estimated 
to bc I = 2.4* 0.1 which is surprisingly near to the renormalization group result in 
O(C1/2). 

Monte Carlo simulations have recently [1,2] revealed a complex crossover 
phenomenon which governs a large part of the critical region of disordered Ising 
systems. It has been shown that independently of the concentration the asymptotic 
behaviour is described by the fued point of weak disorder [3-8]. The critical 
dynamics of disordered Ising systems has not been studied by Monte Carlo simulations 
before. Renormalization group calculations of the field-theoretic GLw-model have 
been performed by Grinstein et a[ [9]. They have shown that disordered spin systems 
obey dynamic scaling behaviour. The Hanis-criterion is fulfilled in the dynamical as 
well as in the static behaviour. According to Grinstein ef al [9] disorder has a large 
effect on the dynamical behaviour. Contrary to the pure spin system, disorder already 
changes the dynamical exponent z = 2 - q + A* in first-order perturbation theory 
in E = d, - d around the critical dimension d, = 4. As in the static case [3-8], 
Ising systems need a separate treatment because of the O( d/2)-fiied point which 
leads to A' = (6 /53~) ' /~  [9]. This extrapolates to a numerical value z = 2.34 in 
d = 3 dimensions which is unusually large compared with pure systems where only 
tiny corrections of van Hove theory ( z  = 2 - 7 )  [lo] have been found [11,12]. 

Unfortunately, the theoretical work has not been continued to higher-order 
perturbation theory as has been done for the static disorder problem [8]. This is 
a severe defect because it is well known from the statics [HI that higher orders in 
perturbation expansion are necessary to obtain reliable results in d = 3 dimensions. 
Instead, further investigations of the critical dynamics have extended the spectrum of 
models to include anisotropic disorder [13] and correlated defects [14-171. 

In this letter we pick up the question of how the dynamics changes along the 
critical line T J p )  when varying the spin concentration of the site-disordered Ising 
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system in three dimensions. According to the renormalization group [9] a crossover 
from the pure to the weakly random fixed point is expected. The asymptotic dynamics 
should be dominated by the fiied point of weak disorder. When the system is further 
diluted, the dynamics should cross over in a yet unknown way to percolative dynamical 
behaviour [18-23]. 

We have studied the dynamics by extensive Monte Carlo simulations investing 
about lox5 single spin flips in the lattice size range L E 120,601. The concentration 
ranged from p = 1.0 to p = 0.6 ( p ,  = 0.31), thus covering a large portion 
of the critical line. Finite-size simulations have been performed at the critical 
temperatures T , ( p )  which have been determined veiy accurately by Binder’s cumulant 
method [24,2]. We have implemented the Metropolis dynamics in a vectorized form 
using periodiohelical boundary conditions. The dynamics may be written formally as 

d P  - = CP 
dt 

where C is the Liouville-operator acting on the probability vector P ( S )  to fiid the 
system in some state S. The dynamical properties have been studied as usual by the 
estimator 

d(V + t)d(t’) - A(t’).. 
d(t’)2 - d(V) 

@A(t) = - 2 

of the normalized correlation function of thermodynamic observables [25,26]. The 
bar denotes the average over the Monte Carlo time series. We have measured 
three quantities d( t ) :  the magnetization M ( t ) ,  ifs absolute value IMl(t) and the 
energy E ( t ) ;  their different dynamical behaviour has been discussed recently [26]. In 
this paper we are concerned with the even quantity IMl(t) only, because of its high 
precision. The systems have been equilibrated during 207h,,1Ml Monte Carlo steps 
per spin. Then, the estimator (2) of the correlation function has been calculated over 
long runs with 1-2 x lo6 Monte Carlo steps per spin, i.e. O(104)7h,,1MI. Finally, 
we have performed configurational averages over several hundred configurations for 
each concentration and lattice size. The resulting relative error which is mainly due 
to the configurational variance is of the order A*/@ = in the relevant time 
range where we analysed the data. Figure 1 gives an impression of the typical time 
dependence of correlation functions of disordered systems in comparison with the 
pure system including the errors. 

The most remarkable feature of disordered systems is the “ a N K  of the 
correlation function in the half-logarithmic plot (figure 1). While the pure system 
displays asymptotic oneexponential behaviour dominated by the largest relaxation 
time T-, i.e. the smallest eigenvalue of the Liowille operator L (l), disordered 
systems do not reach this asymptotic limit even for long times and small values of 
correlations, respectively. Writing the correlation function formally as [27] 

@ ~ ( t )  = i m m P ( - l t l / r ) d p ( r )  (3) 

we conclude that in contrast to the pure system, there is a whole spectrum p( 7 )  of 
relaxation times which are relevant for the functional time dependence of @(i). This 
point will be discussed in our conclusions. 
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Figure l. Half-logarithmic plot of the 
correlation function 9 1 ~ l ( t )  for the 
conoenkations p = 1.0 and p = 0.6. 
Upper and lower graphs are given by 
.P(t)+A+(t). Pure systems have a one. 
exponential relaxation below 9 I 0.5. 
Disordered systems are characterized by 
a strong mat tme  which indicates a 
multitude of relevant time scales. 

..., 

Table 1. Numerical rssults of the fit of the integrated relaxation times and of the scaling 
method. A l ~ l  is the non-universal amplitude of rht,lM~. Both methods lead to identical 
values of dynamical exponents. 

P ziot,lMI Aint,l,wI %I,IMI 

1.0 Z09S(S) 0.051 2085(10> 
0.95 2.16(1) 0.044 215(1) 

0.80 23q1) 0.033 239(1) 
0.63 2.9Y3) 0.017 292121 

0.90 2.232(4) 0.040 2W) 

Since asymptotic relaxation times could not be obtained from the data, we have 
calculated the integrated relaxation time (251 

%t,lMI = 3 JW -m @[Ml(t)dt. (4) 

It is the only quantitative measure of the relaxational processes in disordered systems. 
We have used the scheme of Madras and Sokal [25] (cut-off of the integral at 
about 6-10~~~) as well as the scheme of WoM [28] (exponential extrapolation of 
the estimator). Both methods agree within the errors. The resulting integrated 
relaxation times have been fitted to their finitesize scaling law T~ = AhtLz~~' to 
determine the critical exponent zht and the amplitude A, (table 1). We have found 
that the pure system has the same exponent zint for integrated relaxation times as for 
exponential relaxation times (zq = 2.lOrt0.01) [26]. The precision of the agreement 
is surprising. It means that short relaxation times scale with the same exponent as 
does the asymptotic time scale. 

Our results €or disordered systems (table 1) with different concentrations p show 
a dramatic increase of zht(p) when disorder increases. The theoretical expectation 
that disorder has a very large effect on the value of z is clearly confirmed. The 
concentration dependence of zint is very similiar to that of y (table 1 of [Z]). As 
we have shown previously 121, this does not violate universality but is a signature of 
a crossover phenomenon which affects the dynamic and the static behaviour in the 
same way. Thus, our values of z&) (table 1) are effective exponents which reach 
their asymptotic value in the limit L -, CO. 

According to the dynamic scaling hypothesis [IO], universal behaviour of the 
correlation function @ ( t , L )  is expected for asymptotically long times. As the 
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Figure 2. Scaling analysis of the correla- 
tion functions of pure and strongly dis- 
ordered systems. The unrestsicted data 
collapse taking account of statistical er- 
rors leads to precise dynamical exponents 
z d  (table 1) and to a numerical deter. 
mination of the scaling function. 

integrated relaxation times rLu are integrals over all times, it is not clear whether 
universal scaling is fulfilled for rht as it is for rw. Although the coincidence of zap 
and zht for p = 1.0 is quite promising, doubts may arise as to whether zin, actually 
reflects universal critical behaviour of disordered systems. These doubts are even 
more severe in view of the functional time dependence of @(i) (figure 1) which is 
based on a multitude of time scales. 

In order to test the scaling behaviour of @(t )  [IO] given by Q , ( t , L )  = 
Q,o( tL-z*u) ,  we have done a scaling analysis of correlation functions. In our notation 
we distinguish the dynamical exponent zd determined by scaling from the asymptotic 
one. Notice that universality does not impose any restrictions on the functional 
dependence of the scaling function Go(") apart from the stationarity condition [29]. 
Since we have no information about the functional dependence of Q0(r)  we have 
performed an unrestricted data collapse of our correlation functions @ ( t ,  L )  for eight 
lattice sizes L E [20,60]. Details will be presented in a separate publication [30]. This 
scaling methcd leads to an unambigious determination of the exponent zd, because 
zsd is the only free parameter to be determined by the data collapse. Based on our 
large number of accurate data Q,( t< ,  Lj) it has been possible to apply this scaling 
methcd to intervals of Q, in order to study a possible variation of zht with the scaling 
argument x = t L - z d  [30]. 

We have obtained a collapse of all correlation functions Q , ( t , L )  by the 
appropriate value of zsd. Deviations of the individual correlation functions from 
their scaling function Q 0 ( x )  is of the order of the average error (figure 2). The 
methcd is very sensitive to the correct value of zsd as the errors in table 1 show. 
Comparison with the previously determined values of zht shows perfect agreement. 
This is now self-understood: if @ ( t ,  L )  scales, its integral does as well. 

Summarizing, we have conIirmed that disordered king systems obey dynamic 
scaling behaviour. In addition, our analysis has shown that the scaling function 
Iso(=) is highly non-trivial compared to the simple one-exponential form of the pure 
system (figure 2). The more disordered the system is, the monger is the Curvature 
of the scaling function. The scaling of @ ( t ,  L) implies that the integrated relaxation 
times themselves reflect universal scaling behaviour. 

We have done a more refined analysis of the dynamical crossover which is 
hidden behind the concentration-dependent exponents (table 1). To this end, we 
have plotted the integrated relaxation times in scaling form with the anticipated 
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Figure 3. The scaling function 
r,,lM~L-'R with I = 234 gives 
evidence of the c~assove~ and of 
the asymptotic region as discussed 
in the text. 

asymptotic exponent zR = 2.34 of the weakdisorder tixed point (figure 3). In close 
correspondence with the static behaviour [2], figure 3 shows a crossover which governs 
the whole range of lattice sizes. The weakly disordered systems with p = 0.95 
and p = 0.9 approach their asymptotic behaviour at lattice sizes L Y 50. The 
amplitude of rh, in this limit is a non-universal quantity. Strongly disordered systems 
(p  = 0.6) have a more extended crossover interval. Even more important is the 
fact that they cross over to the asymptotic behaviour from smaller amplitudes. 
This change of slope has already been found in the crossover of static properties. 
The medium concentration p = 0.8 which is characterized by an average exponent 
zht = 2.38 (table 1) appears to be free of a crossover in that the slope of the 
crossover function changes its sign. Therefore, the asymptotic behaviour appears 
to be reached already for small lattice sizes. Our analysis strongly supports the 
expectation that the asymptotic behaviour is described by the weak-disorder fixed 
point for any concentration. Based on the close analogy of the dynamic (figure 3) 
and the static [2] crossover, we conclude that the true value of zR is quite near to 
its Erst-order result [9]. We estimate that the asymptotic value is zR = 2.4 * 0.1. A 
renormalization calculation to O( ,Ez) would be very desirable to verify this result. 

The correlation function @ ( t , L )  is dominated by a multitude of time scales 
which contribute to its time dependence (3). Since Q ( t ,  L) shows scaling behaviour 
(figure 2), the samz is true for the spectrum p ( r , L )  (3). In contrast to the 6- 
like spectrum of pure systems, disordered systems have a rather broad spectrum 
which is depicted schematically in figure 4. A very exciting question is what is the 
physical origin of thii unusual and non-trivial scaling behaviour. The study of random 
frozen configurations has shown that there are clusters of spihs of varying size with 
strong intracoupling but weak intercoupling. These clusters have been argued to 
be responsiik For the static behaviour in the crossover region [2]. The dynamical 
behaviour is simiiiarly influenced by these clusters which may be viewed as entities 
acting in a collective way. Critical spin fluctuations can be interpreted as fluctuations 
of whole clusters. The characteristic time for their sign reversal depends on the 
volume and the surface of each cluster. The correlation function @ ( t )  is then given 
by the superposition of all clusters including their probabilities. We stress that this 
heuristic picture is valid only in the crossover region. If the correlation length becomes 
much larger than the clusters, the frozen-in structure will become irrelevant and the 
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x;rl=* X d ’ .  

Figure 4. Schematic plot of the scaling function L’p( r ,  L) = po(z) with z = rL-’ 
of the spectrum of pure (a) and disordered (b) systems. In pure system the asymptotic 
relavation time Carries almost all the weight. Disordered Wtems have a broad spearum 
(broken curve) in the aossover region where the simulation was performed. In the 
asymptotic ngion a single time scale should dominate (full curve). 

scaling function a,, and p ( ~ )  respectively change to a simple one-exponential form. 
This expectation remains to be checked by simulations of larger systems. 

This work was supported the Sonderforschungsbereich SFB 166 ‘Disorder and Large 
Fluctuations’ and by the HLRZ. 
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